Superoxide anion curbs nitric oxide modulation of afferent arteriolar ANG II responsiveness in diabetes mellitus.
نویسندگان
چکیده
Experiments were performed to test the hypothesis that the impact of endogenous nitric oxide (NO) on ANG II-induced renal arteriolar constriction is reduced in rats with insulin-dependent diabetes mellitus (65 mg/kg streptozotocin; STZ). Arteriolar diameter responses to exogenous ANG II were quantified before and during NO synthase inhibition (100 microM N(omega)-nitro-L-arginine; L-NNA) by using the in vitro blood-perfused juxtamedullary nephron technique. Afferent arteriolar lumen diameter averaged 20.7 +/- 2.0 micrometer in Sham kidneys and 25.9 +/- 1.3 micrometer in STZ kidneys (P < 0.05). Efferent arteriolar diameter did not differ between Sham and STZ rats. In kidneys from Sham rats, afferent and efferent arteriolar responses to ANG II (0.1-10.0 nM) were exaggerated significantly by L-NNA. L-NNA also augmented efferent arteriolar ANG II responses in kidneys from STZ rats (high-glucose bath) but did not alter ANG II responses in afferent arterioles from STZ rats. L-NNA also accentuated efferent, but not afferent, arteriolar ANG II responses in STZ kidneys during acute restoration of bath glucose to normal levels. Superoxide dismutase (150 U/ml) restored the ability of L-NNA to allow exaggerated afferent arteriolar responses to ANG II in kidneys from STZ rats. These observations indicate that superoxide anion suppresses the modulatory influence of endogenous NO on ANG II-induced afferent arteriolar constriction in diabetes mellitus.
منابع مشابه
Suppressed impact of nitric oxide on renal arteriolar function in rats with chronic heart failure.
We performed experiments to test the hypothesis that experimental heart failure (HF) is associated with altered nitric oxide (NO)-dependent influences on the renal microvasculature, including diminished modulation of constrictor responses to ANG II. Eight to ten weeks after inducing HF in rats by coronary artery ligation, we administered enalaprilat to suppress ANG II synthesis and studied rena...
متن کاملNeuronal nitric oxide synthase modulates rat renal microvascular function.
This study was performed to determine the influence of neuronal nitric oxide synthase (nNOS) on renal arteriolar tone under conditions of normal, interrupted, and increased volume delivery to the macula densa segment and on the microvascular responses to angiotensin II (ANG II). Experiments were performed in vitro on afferent (21.2 ± 0.2 μm) and efferent (18.5 ± 0.2 μm) arterioles of kidneys ha...
متن کاملInteractive nitric oxide-angiotensin II influences on renal microcirculation in angiotensin II-induced hypertension.
The present study was conducted to determine the contribution of nitric oxide to angiotensin II (Ang II) reactivity of afferent and efferent arterioles from Ang II-infused hypertensive rats. Experiments were performed in vitro with the blood-perfused juxtamedullary nephron technique in kidneys harvested from hypertensive Sprague-Dawley rats (181+/-1 mm Hg) that had received 60 ng/min Ang II sub...
متن کاملSuperoxide inhibits neuronal nitric oxide synthase influences on afferent arterioles in spontaneously hypertensive rats.
This study was designed to determine the influence of increased superoxide anion in neuronal nitric oxide synthase (nNOS)-dependent regulation of afferent arterioles in spontaneously hypertensive rats (SHR). Afferent arteriolar diameters of male Wistar-Kyoto rats (WKY) and SHR were assessed in vitro with the blood-perfused juxtamedullary nephron technique and averaged 21.6+/-1.6 (n=6) and 18.8+...
متن کاملNeuronal nitric oxide synthase-dependent afferent arteriolar function in angiotensin II-induced hypertension.
This study was designed to determine the influence of neuronal nitric oxide synthase (nNOS) in tubular flow-dependent regulation of afferent arteriolar diameter in hypertensive Sprague-Dawley rats that received 60 ng/min angiotensin II (Ang II) subcutaneously for 13 days. Systolic blood pressure of control and Ang II-infused rats averaged 122+/-2 (n=23) and 194+/-2 mm Hg (n=24). Afferent arteri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 278 2 شماره
صفحات -
تاریخ انتشار 2000